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The equilibrium of an elastic body with a plane base placed on several small smooth rigid supports I'(g)
is studied. One-sided contact boundary conditions are imposed on I'(¢) The leading terms of the
asymptotic solution of the problem as & - 0 are constructed and justified; the problem becomes
statically indeterminate when the number of supports exceeds three. The problem of finding the
contact zone reduces to solving a non-linear algebraic problem. Besides the three equilibrium
equations which connect the unknown support reactions, this problem includes compatibility of the
deformation conditions which contain, in particular, three unknown parameters describing the
settlement of the body. Necessary and sufficient conditions for the existence and uniqueness of the
solution of the limiting algebraic problem are proved.

1. STATEMENT OF THE PROBLEM

Suppose that in its undeformed state the body occupies a domain Q in the space R’ with
boundary 9Q, a part X of which coincides with part of the x, =0 plane (see Fig. 1). On ¥ \93,
we select points P', ..., P’ with coordinates (x/, xJ,0), j=1, ..., J. Here and below our
notation does not distinguish between points in R* and their images in the {x: x, =0} plane in
R’. Suppose also that ®, is a domain in R? bounded by a simple smooth closed contour dw,, €
is a small positive parameter, and

@;(€) = {(x},%,,0) € E\AL:e™ (x5 - x{, xy —x)) e @} j=1,....J

Additional assumptions will be made in Sections 3 and 4 about the relative positions of the
points P’ and the sets ©,(g). The union of all the closures w,(¢) is denoted by I'(e). Under the
action of volume forces f the body can rest on plane completely rigid smooth supports T'(g).
The surface oQ\I'(g) is assumed to be unloaded.

In order to write the elasticity equations in a convenient from we will use the following
notation

P (x)=e'x;, ®*(x)= 2% (x,€> + xe?) an
®3(x) =272 (€% + xye!), DO(x)=2""(xye' +x,6%)
¢ =¢, e*(x)=2%xxe (12)
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Here i=1, 2,3, ¢ is the unit vector along the x; axis, the cross denotes the vector product,
and all vectors are expressed as columns. Suppose also that D(x) is a (3x6) matrix with
columns ®'(x), ..., ®°(x) and that d(x) isa (3x6) matrix with columns ¢!, ..., ¢%x), and
that A is a (6 x6) matrix of the elastic moduli for an isotropic body

Ay =x+2u8jk, A, =M5Pq
qu = Apk =0, j,k=12,3;,p,g=4,5,6
where 3, is the Kronecker delta and A and p are Lamé coefficients.

If w=(, w,, w,) is the displacement vector, ¢ denotes transposition, and V, is the gradient,
then the six-dimensional columns

D(V, ) u(x), (u(x)) = AD(V, ) u(x)

are the strain and stress vectors. For example, the stress vector is expressed in terms of the
Cartesian components 6; of the stress tensor as follows:

0 =(011,02,033.2 %0y3,2 % 05,27 % 0,)

It can be shown that the Lamé system and the homogeneous boundary conditions on
oQ\I'(g) can be written as

L(V,)u(e,x)=-D(V,)AD(V Y u(e,x) = f(x), x € Q 1.3)
B(x,V )u(e,x) = D(w(x))AD(V,, Yu(e,x)=0,xe0Q\I'(e)

Here v is the unit vector of the inner normal to the boundary of the domain Q. Equation (1.3)
are closed by one-sided contact conditions at the sets o,(e)

03 (U;€,X) =03, (w;€,x)=0 (1.4)
u3(8, x) = 0, 033(‘“8, x) =<0
u3(€,X)033(;,x)=0, xew;(€);j=1..,J (1.5)

We know (see [1, 2], etc.) that the Signorini problem (1.3)-(1.5) is equivalent to finding the
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minimum of the potential energy functional J(v)=a(v, v)-F(v) on the convex cone

K ={ve H(Q):0,(x)=0,x e ['(e)}
H'(Q) denotes the space of vector functions with finite elastic energy

a(v,v)= K(AD(V ) v, D(V ) v)q

and F(v)=(f, v), is the work done by body forces fe L,(Q) during admissible displacements
veK; here (,), is the scalar product in L,(Q).

The case of balanced loads is not considered. The equilibrium equations for a body on
smooth supports require that

F()=F1)=0,F(x)~F(x)=0F1)<0 (16)

Here F(y)=(f, ye'), for ye L,(Q).
In this case the system of forces is statically equivalent to a single resultant force F,(1)e’
applied to an arbitrary point on the central axis of the system

x=x = KO (B(x)-F(x))
X =x3 = B T(R(x) - Fx))

The intersection of all the closed half-planes containing I'(e) is referred to as ®(e), the
convex shell of I'(e). The polygon I'(0) is denoted by P. Let R={r:r=d(x)a, aeR®} be the
space of solid displacements, and R’=RnK, and R”={reR’:-reR’} be the subset of R’
generated by all “two-sided” displacements 7, =c¢, —CX,, 1, =€, +Co%;, 1 =0.

The followmg conditions are necessary and sufficient [1, Section 2.10] for the existence of an
absolute minimum for the functional J on K: the central axis of the applied system of forces
intersects the set I'(¢) at an internal point. Under the assumptions made above the vector
function from K minimizing J, if it exists, is defined, apart from an arbitrary two-sided
displacement.

In this paper the asymptotic behaviour of the solution of the Signorini problem (1.3)-(1.5) as
e — 0 is constructed by the method of maiched asympiotic expansions. We emphasize that a
simple passage to the limit is impossible; when & =0 relations (1.4) and (1. 5) dlsappear and

Egs (1.3) are transformed into the second fundamental boundarv-value pro of the theon

AUYO (4] QEIV UIGIISAVIILVU 11UV WU OVLVLIU AuaGiav nta vuvuiiuar y %4

of elasticity

7
iy

L(V Ju(x) =f(x),x € Q; B(x,V,)u(x) =0, x € 9Q 1.7

In the case of (1.6) this problem has no solutions.

2. CONSTRUCTION OF THE ASYMPTOTIC FORM

We will use the method of matched asymptotnc expansions (see [3, 4] etc.), and look for two
types of expansion: an ouier one, valid far from the set I'(g)

ule. x)=¢ lvolv\J.Povlh 4 71\

A hard = \ =y y J \&.1)

and an inner one, valid in small neighbourhoods of ®,(e)

u(e,x)=e"'w (&) +e"w! (F)+... (22)
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In (2.2) we have introduced the “stretched” variables
g =(El.t.ED E=e'x-P) (23)

Substituting (2.1) into (1.3), we find that v° is a solid displacement in R\R”, i.e. v’ =d(x)a’,
aeR% a’=0 (i=1, 2, 6). Furthermore, the function v' should satisfy problem (1.7). The
method of matched asymptotic expansions assumes that the terms &*'v* from the right-hand
side of (2.1) can have singularities of orders O(lx—P'*) at the points P’ (near the perturba-
tion zone of the boundary conditions), This allows the expression for v' to have singularities
of order O(lx— P’ I'') generated by the point forces. We denote by G’ the generalized Green’s
function which satisfies the relation

L(V )G/ (x) = -d(x)c!, x e Q3 B(x,V, )G’ (x) =0, x € IQ\ P/ (24)
(67, ¢)q =0,i=3,4,5,G/ (x) = T(x - P))+ 0(1), x = P/

The notation is as follows: T is the solution of the Boussinesq problem of the loading of an
elastic half-space x, =0 by a unit point force applied at the origin of coordinates and directed
along the x, axis

ATUT,(x) = x5 0x00 +(1 - o g Ixd ™ (x4 i =1,2

ATy (x) = x21x7 +a7lixt o= (A + 207 (A +p)
The vector ¢’ is determined from the system
Sci = b7 =(0,0,1,27%xf,-2% x{,0) 25)

We recall that the Gram matrix S =II(¢', ¢*), 1%, is non-singular,
Suppose also that v € H*(Q) is a solution of problem (1.7) for a self-equilibrating load

£2(x) = f(x) - d(x)c® 26)
with (v, ¢),=0 (i=3, 4, S) The vector ¢® satisfies system (2.5) with right-hand s1de
components b =(f, ¢'), (= ., 6). Then we can have the following representation for v'

vi{x)=v'%(x)+d(x)a' + R;Gl(x)-i-...-i-R!Gj(x) @n

Here d(x)a' e R\R”, and the R; are certain constants.

Because the vectors v° and G’ leave errors in the system of equilibrium equations (of the
form d(x)c", see (2.6) and (2.4)), the vector (2.7) satisfies (1.7) only when the additional
conditions

~-F(1)=R+...+R; (2.8)

~x; K1) = xiR+... 4% Ry, —x3B(1)=x}R+...+x3R,

are satisfied.
We will now consider the construction of the inner expansion terms, with the help of which
condition (1.6) will be satisfied. We change to the fast variables (2.3) and then put e=0, Asa
result we obtain from (1.4)—(1.6) the model Signorini equation for determining w”

L(Ve)w" () =0,EeR] = (EeR*:E; > 0) 2.9)
O3 (WO (£,0))= 05, (W (£,00)=0,&'= (§,,8,) = R
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w3/ (£,0)= 0, 05,(w" (£,0))<0
w3/ (E,0)05,(w* (£,0))=0,E' € w;

(2.10)

We will omit the superscripts on the symbol &’. Relations (2.9) and (2.10) are supplied with
additional asymptotic conditions obtained by matching the outer and inner expansions.
Because |& I=¢™ |x—P’|, by extracting the leading asymptotic forms from v° and v' we obtain

evO(x)+v!(x) ~ 7 {d(P/)a’ + R T(E)) (2.11)

as x— P,
Comparing expansions (2.1) and (2.2) of the same function u in the {x:ce'* <|x- P’ I< Ce"?}
zone (or equivalently, for |€' |=0(e™'?)), we derive the above-mentioned conditions

WY (®)=d(P)a’ + RT(®)+0(187),1§— o. (2.12)

3. SOLUTION OF THE MODEL SIGNORINI EQUATION

If the inequality a3 +27*(alx} - ajx!)=0 holds, it is easy to see that problem (2.9), (2.10),
(2.12) is satisfied by the constant vector w” = d(P’)a’ and R; vanishes.

We now consider the case when a+2"*(alx] - asx{)<0 We denote by ¢; the capacity
cap(w;), of the set @, ={§:&' ew,, §,=0}, and by Y, the corresponding capacmve potential

(see [5])
—AY(B)=0,EeR\T;; Y(H=1Eew, (3.1)
Yi(®)=c;187 +0087),1§-> o

In accordance with the Papkovich-Neuber representation, the capacitive potential gives the
solution to the contact problem of the indentation (without turning) of a smooth punch with a
flat o;-shaped base into an elastic half-space &, =0 to unit depth (see [6, 7])

LAGE O —n;fa.-Yj@umdc EDX, B i=12
3

Wi () = Y;(§) - 0£39;Y,(§),0; =3/ 3¢,

The pressure at the boundary of the half-space produced by the punch is calculated from the
value of the normal derivative of the function ¥, and is equal to

-6, (£',0) = 210, Y; (' . +0)

The pressure at the base of the punch is positive (by the maximum principle 9,Y;(§’, +0)<0
when &’ew;), and has a root singularity at the edge of the contact surface

Y, =1+ K, (0)p¥ cos Y0+ F(§), |V, (8 < cap® (32)

Here 1 is the arc length along do, and (p, ¢) are polar coordinates in the planes perpendicular
to dw,. K; is a positive function i in C~(dw,), and 0<3 is otherwise arbitrary.

If the punch which is loaded with a point force parallel to the &, axis, is to undergo only a
translational displacement, it is necessary and sufficient for the line of action of the force to
coincide with the line
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-1
gi = :J E[ ja:;Y,(T], +0)dn) { InlaJ)G(n""'O)dn]’ i=12

@

The point (&, &) is called the centre of pressure of the plane shape ;. If the origin of
coordinates is displaced to the point (&, £, 0) then the asymptotic term Y, acquires at
infinity the form Y;(§)=¢, I§" +O(&I7), (cf. (3.1)). Below we shall assume that the points P,
coincide with the centres of pressure ;.

Conditions (2.9)-(2.12) are therefore satisfied if

wo (&) =d(P))a® ~ (a +272(adx} - a¥x{ )W/ (&) (3.3)

Comparing the asymptotic behaviour of the vector (3.3) at infinity with formula (2.12) we
obtain

R; = —K;(ad +27%(adx} -alx{)), X, =4pac

Let (¢), =(t+1t1)/2 be the positive part of the number ¢eR. The terms in the expansions
(2.1) and (2.2) are found apart from some constants. The vector a' is calculated at the next step
of the construction of the asymptotic form, and to determine the reaction forces R, ..., R,
and settlement parameters a4, a), 4, in addition to the equilibrium conditions (2.8), the
conditions

a? +27%(adx} - alx{)= 0= R, =0

0 - . . _ . ‘
a; +2 %(agx{, —~adxl)< 0= R; =—Kj(ag +2 %(agxé -alx{))

also appeared.
In short notation these conditions are

R =x;(-ad +27%(alx] —adx)),, j=1,.... (3.4)

We call relations (3.4) together with (2.8) the limiting algebraic problem. We emphasize that
after solving this problem the terms w” of the inner expansions (2.2) are recovered, together
with the term v°(x) =d(x)a’ from (2.1). Finally, the second term in (2.7) of the outer expansion
is determined, apart from the term d(x)a'. Restricting ourselves to constructing the dominant
terms of the asymptotic form, we now put a' =0.

4, THE SOLVABILITY OF THE LIMITING ALGEBRAIC PROBLEM

We will formulate and prove sufficient conditions for the existence and uniqueness of the
solution of problem (2.8), (3.4).

Assertion 1. Suppose the following two conditions are satisfied: (1) three of the points P/,
j=1,...,J (J=3) do not lie on the same straight line, and (2) x° is an internal point of P.
Then the hmltmg algebraic problem has a unique solution.

Proof. We define the continuous non-linear operator N:R*— R? by the formula N(a)=XM[X'a],,

where X is a 3xJ matrix with columns (1, x!, xJ), M is a diagonal JxJ matrix diag{x,, ..., x,} and
[2). =((g)., - - -, (g,,)") for a vector g in R’. Problem (2.8), (3.4) is equivalent to solving the operator
equation

N(a)=h=(-F), - F1D.-x3 K1) (4.1)
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We denote by (,) the scalar product in R®. The limiting algebraic problem can also be reduced to the
problem of minimizing the functional

&(a;h) = J4(N(a),a)-(h,a)

in R%.
For any non-zero a€R? the point ¢, =llall™a lies on the unit sphere § and we have the representation
O(a;h) = Ylal* (XMIX'e, 1., ;) - fakh.e, )

Because the function R'> ¢~ (f), ¢ is convex and M is a diagonal matrix, the function @ is convex on
R3 ie.

d(Aa! +(1-1)a? = Ad(a!)+(1-A)®(a?)Va',a2 eR3, VA e(0,1)

The relation (XM[X'e],, e)=0 is also satisfied.
We will denote by K, the kernel of the restriction of the operator Nto §

Ky={e€S:N(e)=0)={ee S:(XM[X'e], &) =0)
The inclusion e € K, is equivalent to the system of inequalities

€ +e2x{ +e3x{ <0, j=1...,J (4_2)
Consequently, K, is a closed subset of S.

Condition (4.2) ensures that all the points P/ lie in the single closed half-plane e, +e,x, +e,x, <0,
which also contains the polygon P. According to the first assumption the convex envelope of the points
P! does not degenerate into a line interval, and the interior of P therefore lies entirely in the open haif-
plane e, +e,x, +e,x, <0. Hence, if F,(1)<0 (see condition (1.6)), then —(k, ) >0 for any e € K,,. Because
K,, is closed, there is an open set Qc S such that Q> K,, and for VeeQ the inequality —(h, e)=p,>0
holds. We put

max(h,e)=PB; >0, min (N(e),e)=B5>0
eeS eeS\Q

The following limits hold
@(a;h) = Ja)B;, Viaj'ael
®(a;1) > Yol B; ~JalB;, V fo] "2 €5\ O

Foreach T>0 a >0 exists (depending only on T') such that for all ain R? satisfying llall=¢ we have
the inequality ®(a, k)= T.Indeed, it is sufficient to put

t=max(B]'T, B3 (B, + (B3 +2B; 7))

Hence, limda)=c as llall- e, and according to a well-known theorem of convex analysis (see e.g.
Section 2.2 of [2]), solutions of problem (4.1) exist and generate a convex subset of R®.

The uniqueness of the solution is also proved by applying the above theorem, because the functional is
strictly convex on the set of solutions by virtue of the diagonality of M and the inequality

(M+(A=A)s) (M+(1=-N)s) <At t+(1-RA)s,s
Vs,teR,s#t,5s>0; Ae(0,1)
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5. THE PROPERTIES OF SOLUTIONS OF THE LIMITING ALGEBRAIC PROBLEM

Let the column a’ ¢ R® be a solution of Eq. (4.1). Renumbering the points P’ if necessary,
we can assume that the positive components of the vector M[X"a°], in R’ determine the set of
reaction forces R, ..., R, (J°</). The following obvious assertion contains a necessary
condition for the existence of a solution of Eq. (4.1)

Assertion 2. If a solution of problem (2.8), (3.4) exists, then x°=(x{, x3) lies in the convex
envelope P° of the points P', ..., P,

Corollary . If x° does not belong to P, then the limiting algebraic problem has no solution.

The number of supports and their relative position naturally influence the properties of the limiting
problem, and a useful characteristic turns out to be the rank of the matrix X. A single support
corresponds to rank X =1, For several points lying along a single straight line rank X =2. I however
rank X =3, then, firstly, /=3, and secondly, there are at least three poinis not lying along the same
straight line.

In the cases rank X' =1, 2, x°eP or rank X =3, x°edP Eq. (4.1) has infipitely many solutions. We
note that when x°eP the point x° is an internal point of T'(£) for all £>0 and the solution of the original
problem (1.3)-(1.5) is unique. This paradox is explained by the fact that in this situation the asymptotic
construction used previously needs to be corrected. Here it is appropriate to describe the equilibrium
position of the body Q on supports ®£) as being unstable in the asymptotic sense.

We will indicate some properties of solutions of the limiting algebraic inequality in the non-
trivial case,

Assertion 3. Suppose that rank X =3 and x° is an inner point of P. If a’ is a solution of
problem (4.1), then, firstly, J°=3, secondly the points P, ..., P” lie in the open half-plane
al +ajx, +a3x, >0, and thirdly, x° lies in the interior of the supporting polygon P°.

To prove these assertions (see also Section 112 of [8]) it is convenient to assign positive
weights X, to the points P’ and introduce a system of coordinates attached to the principal
axes of inertia of the system of material points P, ..., P/ or P’, ..., P”. This mechanical
analogy suggests an answer to the question of the conditions under which the body will be
certain {0 rest on ail the supports.

Assertion 4. If, under the conditions of Assertion 3, the point x° is contained in a sufficiently
small neighbourhood of the centre of mass of the system of material points P', ..., P then
Je=J.

We note that we have in passing established the necessity of the conditions formulated in
Assertion 1,

6 JUSTIFICATION OF THE ASYMPTOTIC FORM

We will additionally assume that the solution of the limiting algebraic problem possesses the
following property

—

@ +27B(adxi —alxf) 20, j=1..,J (6.1)

‘We have thus eliminated the case of the body touching a support without a positive reaction
force. Let J° be the number from the preceding section. One can verify that in the original
Signorini problem (1.4)-(1.6) we have the boundary conditions

u3(8,x)=0, xew;(e),j= LooJ°

On(wex)=0.xew;(e), j=1+J",...,J 62
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We will sketch a proof of this fact. We take the vector
U(e,x) = xo(&,x)[e™'d(x)a’ +v' (x)] +&7! 5: 1w (&) -
a 63)
e‘lxo(e,x)jf,l x; (d(P)a® + RT(E)]

to be an asymptotic approximation to the solution w(e, x). Here @°, v, w% R, are the
quantities defined previously, and ¥, x; are cut-off functions on C;(R?), with y/=1 near the
set @, x;=1 in a neighbourhood of the point P/, x,=0 near 0Q\X and yx;=0 around

Pi(g#))
Xo&X)=1-% (€7 (x= P)-..~x' . (€7 (x~ P")). (6.4)

We will clarify the construction of (6.3). The first term on the right is the leading term of the
outer expansion; with the help of the cut-off (6.4) it is cancelled outside the zone of action of
this expansion (in the immediate vicinity of P/, j=1, ..., J°). The second term contains
components of the inner expansions; due to the cut-offs x, the boundary layers are localized
near the P’. Finally, the terms of the asymptotic representations (2.11) and (2.12) are the same
(having undergone matching) and are used twice in (6.3): both in the first and second
expressions on the right. This doubling is removed by the subtraction of the third term.

We substitute (6.3) into the (linear!) problem (1.4), (1.5), (6.2); we denote the exact solution
of the latter by w'. By the constructions performed the errors in equalitites (1.4) are small, and
the boundary conditions (1.5) and (6.2) are completely satisfied.

With the help of results from [9, 10] we obtain an estimate of the difference r=w’'-U in
some weighted space. In particular, from such an estimate it follows that the traces of the r, on
w,(€), j=1+J°, ..., J are small, from which, by (6.1), the inequalities u,=U,~r,>0 on ,(e),
j=1+J° ..., J, follow for sufficiently small . This estimate cannot guarantee the smallness of
the traces of ©,,(r) because of the singularities of the stresses at the edges 00,(g). However due
for formulae (6.1) and (3.2) (recalling that K, >0) the relations 6,(U)+6,(r)<0 hold on
w,(€), j=1+J°. The inequalities from (1.6) are therefore satisfied by w', which means that w'
is a solution of the Signorini problem (1.4)-(1.6). Finally, this estimate justifies the asymptotic
behaviour u~U, and also verifies the outer expansion (2.1) and the inner expansion (2.2) of
the solution u (g, x).

Note that the arbitrariness (an element from the lattice R”) in the choice of solution in all the
problems is the same and hence has been ignored.
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